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INTERACTION OF A DIE

WITH A LAYERED ELASTIC FOUNDATION

UDC 539.3A. A. Kalyakin

Plane and axisymmetric contact problems for a three-layer elastic half-space are considered. The
plane problem is reduced to a singular integral equation of the first kind whose approximate solution
is obtained by a modified Multhopp–Kalandiya method of collocation. The axisymmetric problem is
reduced to an integral Fredholm equation of the second kind whose approximate solution is obtained
by a specially developed method of collocation over the nodes of the Legendre polynomial. An axisym-
metric contact problem for an transversely isotropic layer completely adherent to an elastic isotropic
half-space is also considered. Examples of calculating the characteristic integral quantities are given.

Key words: contact problem, layered elastic foundation, die.

1. Auxiliary Problem. We consider the problem of equilibrium of an elastic half-plane with a two-layer
elastic coating (Fig. 1) under conditions of plane deformation. Complete adhesion is reached between the layers
H − h ≤ y ≤ H and 0 ≤ y ≤ h, and also between the lower layer 0 ≤ y ≤ h and the half-plane y ≤ 0. The upper
layer is loaded by a distributed normal pressure q(x). The mechanical parameters (shear moduli and Poisson’s
ratios) of the layers and the half-plane are Gj and νj (j = 1, 2, 3), respectively.

The boundary condition of the problem have the following form:

— for y = H ,

σ(1)
y = −q̃(x), τ (1)

xy = 0,

q̃(x) = q(x), |x| ≤ a, q̃(x) = 0, |x| > a;
(1.1)

— for y = h,

u1 = u2, v1 = v2, σ(1)
y = σ(2)

y , τ (1)
xy = τ (2)

xy ; (1.2)

— for y = 0,

u2 = u3, v2 = v3, σ(2)
y = σ(3)

y , τ (2)
xy = τ (3)

xy . (1.3)

Here u and v are the displacements along the x and y axes, respectively, σy is the normal stress, and τxy is the shear
stress. The boundary conditions (1.1)–(1.3) should be supplemented by the absence of stresses in the structure as
|x| → ∞ and |y| → ∞.

To solve the problem, we use the general representation of the solution of the Lamé equations via the
biharmonic function of displacements χ:

u = − ∂2χ

∂x∂y
, v =

[
2(1 − ν)∆ − ∂2

∂y2

]
χ (1.4)
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Fig. 1. Geometry of the problem.

(∆ is the Laplace operator). Presenting the biharmonic functions χj (j = 1, 2, 3) in (1.4) in the form of the Fourier
integrals

χj(x, y) =
1
2π

∞∫

−∞
Xj(α, y) e−iαx dα, (1.5)

we obtain the expressions for the transforms Xj(α, y) in Eq. (1.5)

X1(α, y) = [a1(α) + |α|ya2(α)] e|α|y +[b1(α) + |α|yb2(α)] e−|α|y,

X2(α, y) = [c1(α) + |α|yc2(α)] e|α|y +[d1(α) + |α|yd2(α)] e−|α|y,

X3(α, y) = [e1(α) + |α|ye2(α)] e|α|y,

(1.6)

where ten functions al, bl, cl, dl, and el (l = 1, 2) have to be found from the boundary conditions (1.1)–(1.3). To find
these functions, we express the boundary conditions (1.1)–(1.3) (using the Cauchy formulas relating displacements
and strains and Hooke’s law relating strains and stresses) in terms of the functions χj (j = 1, 2, 3). After that, we
present the discontinuous function q̃(x) of the form (1.1) as the Fourier integral

q̃(x) =
1
2π

∞∫

−∞
Q(α) e−iαx dα (1.7)

and write the boundary conditions (1.1)–(1.3) in Fourier transforms. Using now Eqs. (1.6), we obtain a system of
ten algebraic equations for determining the functions al, bl, cl, dl, and el (l = 1, 2). Let us solve this system.

Substituting the found values of al(α) and bl(α) (l = 1, 2) into the first formula in (1.6), we use the second
formula in (1.4) to construct an expression for v′x(x,H) necessary further to formulate the contact problem:

v′x(x,H) =
i

2πθ1

∞∫

−∞
sgn (α)L(|α|H)Q(α) e−iαx dα, θ1 =

G1

1 − ν1
. (1.8)

The expression for the function L(u) is rather cumbersome and is not given here. We only note that the
function L(u) is continuous and possesses the following asymptotic properties:

L(u) = 1 +O(e−2|u|δ), |u| → ∞, δ = inf (ε, 1 − ε),

L(u) = n+O(|u|), |u| → 0.
(1.9)

2. Plane Contact Problem. We replace the first boundary condition in (1.1) by the following conditions:

v′x(x,H) = −[β − f ′(x)], |x| ≤ a, σ(1)
y (x,H) = 0, |x| > a. (2.1)

The first boundary condition in (2.1) is the condition of contact between the stiff die whose foundation is described
by the function y = f(x) and the surface of the two-layer coating of the elastic half-plane. The second boundary
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condition in (2.1) implies the absence of the normal load onto the surface outside of the contact region |x| ≤ a. We
assume that the die is pressed without friction into a three-layer foundation by a force P that displaces the die by
a certain small distance translationally in the negative direction of the y axis and turns the die by a small angle β.

The remaining boundary conditions in (1.1)–(1.3) and the condition of the absence of stresses in the structure
at infinity remain unchanged. Then, with allowance for Eq. (1.8), the first boundary condition in (2.1) is satisfied
if the following relation is valid:

∞∫

−∞
sgn (α)L(|α|H)Q(α) e−iαx dα = 2πiθ1[β − f ′(x)], |x| ≤ a. (2.2)

The second boundary condition (2.1) is satisfied if the inverse transform of Eq. (1.7) is written as

Q(α) =

a∫

−a

q(ξ) eiαξ dξ, (2.3)

where q(x) is an unknown contact pressure.
Substituting Eq. (2.3) into Eq. (2.2) and making some simple transformations, we obtain the following

integral equation for determining q(x):
a∫

−a

q(ξ) dξ

∞∫

0

L(u) sin
(
u
ξ − x

H

)
du = πθ1H [β − f ′(x)], |x| ≤ a. (2.4)

This equation is supplemented by the condition of die equilibrium

P =

a∫

−a

q(ξ) dξ, Pe =

a∫

−a

ξq(ξ) dξ, (2.5)

where e is the distance from the y axis to the line where the force P acts. The second condition in (2.5) serves to
determine the die-turning angle β. If the half-length of the contact line a is not defined by the die angle, Eq. (2.4)
should be supplemented by the conditions

q(±a) = 0, (2.6)

necessary to find the quantities a and e for a prescribed force P .
3. Method of Solving the Plane Problem. Using the integral

∞∫

0

sin (uz) du =
1
z
,

understood in the general sense, we write the integral equation (2.4) in the following form:
a∫

−a

q(ξ)
dξ

ξ − x
= πθ1[β − f ′(x)] +

1
H

a∫

−a

q(ξ)G
(ξ − x

H

)
dξ,

G(z) =

∞∫

0

[1 − L(u)] sin (uz) du.
(3.1)

Note that the left side of Eq. (3.1) contains a singular operator with the Cauchy kernel, and the right side contains
a regular operator, because the function G(t) is continuous, which follows from Eqs. (1.9).

To construct an approximate solution of the integral equation (3.1), we intend to use the modified Multhopp–
Kalandiya method [1, 2]. Let us briefly describe its scheme. It can be shown [3] that the general solution of Eq. (3.1)
has the form

q(x) = ω(x)/
√
a2 − x2. (3.2)
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We substitute Eq. (3.2) into Eq. (3.1) and pass to new variables ξ = a cos τ and x = a cos t. As a result, we obtain
π∫

0

Ω(τ) dτ
cos τ − cos t

= πg(t) +
1
λ

π∫

0

Ω(τ)G
( cos τ − cos t

λ

)
dτ,

Ω(t) =
ω(a cos t)
aθ1

, g(t) = β − f ′(a cos t), λ =
H

a
.

(3.3)

For the function ω(x), we introduce into consideration the Lagrange interpolation polynomial over the nodes

xl = a cos tl, tl = π(2l − 1)/(2N), l = 1, 2, . . . , N,

which are zeros of the Chebyshev polynomial of the first kind TN(x/a). In particular cases, where ω(x) is an odd
or an even function and N = 2r + 1 (r ≥ 1), such polynomials have the form

Ω(t) � 1
r + 1/2

r+1∑
l=1

Ω(tl)δl
(
1 + 2

r∑
m=1

cos (2mtl) cos (2mt)
)
,

Ω(t) � 2
r + 1/2

r∑
l=1

Ω(tl)
( r∑

m=1

cos ((2m− 1)tl) cos ((2m− 1)t)
)
,

(3.4)

where δl = 1 for l �= r + 1 and δl = 1/2 for l = r + 1.
Substituting the approximate expressions for Ω(t) in one of the forms (3.4) into Eq. (3.3) and using expres-

sion 7.344(1) from [4]
π∫

0

cos (jτ) dτ
cos τ − cos t

= π
sin (jt)
sin t

, 0 ≤ t ≤ π, j = 0, 1, . . . ,

we can exactly calculate the integral in the left side of Eq. (3.3). To approximately calculate the integral in the
right side of this equation, we use the Gaussian quadrature

π∫

0

p(τ) dτ =
π

N

N∑
l=1

p(tl).

Calculating the integrals in (3.3), we assume that t = ts in the resultant expression and obtain a system of r linear
algebraic equations with respect to Ω(tl):

−
r+1−p∑

l=1

Ω(tl)δl
{ 1

sin ts
χ(p)

r (tl, ts) +
1
2λ

[
G

(cos tl − cos ts
λ

)

− (−1)pG
(cos tl + cos ts

λ

)]}
=

(
r +

1
2

)
g(ts), s = 1, 2, . . . , r, (3.5)

χ(p)
r (τ, t) = −2

r∑
m=1

cos ((2m− p)τ) sin ((2m− p)t)

[p = 0 and p = 1 for the even and odd function ω(x), respectively].
To close system (3.5) for the even function ω(x), we have to add an equation obtained from the first condition

in (2.5) with the use of Eq. (3.2) and the first formula in (3.4):

P

aθ1
=

π

r + 1/2

r+1∑
l=1

Ω(tl)δl. (3.6)

When system (3.5), (3.6) is solved for the even function ω(x) and system (3.5) is solved for the odd func-
tion ω(x) with respect to Ω(tl), Eqs. (3.4) can be used to find the approximate expressions for the functions Ω(t) and,
hence, the functions ω(x) and q(x). Further we can use, if necessary, the second condition in (2.5) and conditions
(2.6) to determine the quantities β, a, and e.
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TABLE 1

λ c0 λ c0

1/4 2.72 2 1.93
1/2 2.48 4 1.65
1 2.11

Let us consider an example of a parabolic die with smooth edges under the action of a centrally applied
force. The function of the die-foundation shape has the form f(x) = x2/(2R), where R is the radius of curvature
at the apex of the parabola. Using the values of the parameters

G2 = 3G1/2, G3 = 2G1, ν1 = 0.25, ν2 = 0.35, ν3 = 1/3, H/h = 2,

we find the dependence of the coupling coefficient between P/(θ1a) and a/R on λ. The values of c0 = PR/(θ1a2)
calculated for different values of the parameter λ are listed in Table 1.

4. Axisymmetric Contact Problem. We consider an axisymmetric contact problem of pressing a rigid
die into a three-layer foundation consisting of two elastic layers that rest on an elastic half-space. The layers are
completely adherent to each other and to the half-space. The thicknesses of the upper and lower layers are H − h

and h, respectively. According to [5], this contact problem can be reduced to an integral equation of the first kind
with respect to the contact pressure q(r) with a symmetric kernel by means of Hankel’s transform:

a∫

0

q(ρ)K
( ρ

H
,
r

H

)
ρ dρ = θ1H [δ − f(r)], 0 ≤ r ≤ a,

K(σ, τ) =

∞∫

0

L(u)J0(σu)J0(τu) du, θ1 =
G1

1 − ν1
.

(4.1)

Here a is the radius of the contact region, δ is the translational displacement of the die along the axis orthogonal to
the foundation surface, f(r) is the function of the die-foundation shape, H is the thickness of the two-layer plate,
and G1 and ν1 are the mechanical characteristics of the upper layer. The function L(u) coincides with that obtained
in the auxiliary problem (see [6]).

The integral equation (4.1) is supplemented by the condition of die equilibrium

P = 2π

a∫

0

q(ρ)ρ dρ, (4.2)

which serves to determine the relation between the pressing force P and the depth covered by the die δ. If the
radius of the contact region a is not defined by the die shape in the problem formulation, it is prescribed by the
condition

q(a) = 0. (4.3)

5. Method of Solving the Axisymmetric Problem. The integral equation of the first kind (4.1) can
be reduced to the following integral equation of the second kind with a difference kernel [6, 7]:

p(x) − 1
πH

a∫

−a

p(ξ)M
(ξ − x

H

)
dξ = θ1g(x), |x| ≤ a,

M(y) =

∞∫

0

[1 − L(u)] cos (uy) du;
(5.1)

the functions p(x) and g(x) being even and related to the functions q(r) and δ(r) = δ − f(r) as

q(r) =
2
π

[ p(a)√
a2 − r2

−
a∫

r

p′(ξ) dξ√
ξ2 − r2

]
, g(x) = δ(0) + |x|

|x|∫

0

δ′(ρ) dρ√
x2 − ρ2

. (5.2)
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We introduce the dimensionless complexes

x′ =
x

a
, ξ′ =

ξ

a
, ϕ(x′) =

p(ax′)
θ1a

, ψ(x′) =
g(ax′)
a

, λ =
H

a

and write the integral equation (5.1) as follows:

ϕ(x) − 1
2πλ

1∫

−1

ϕ(ξ)
[
M

(ξ − x

λ

)
+M

(ξ + x

λ

)]
dξ = ψ(x), |x| ≤ 1 (5.3)

(hereinafter, we omit the primes at x′ and ξ′ for simplicity).
To approximately solve the integral equation (5.3), we use the collocation method described in [8, 9]. We

construct the following even Lagrange interpolation polynomial over the zeros of the Legendre polynomial for the
function ϕ(x):

P2N+1(x) =
1

22N+1(2N + 1)!
d2N+1(x2 − 1)2N+1

dx2N+1
.

It has the form

ϕ(x) ≈ ϕ(0)P2N+1(x)
xP ′

2N+1(0)
+ 2

N∑
n=1

ϕ(xn)xP2N+1(x)
(x2 − x2

n)P ′
2N+1(xn)

[P2N+1(xn) = 0, n = 0, 1, . . . , N, x0 = 0].
(5.4)

Note that it is possible to pass to polynomials of even powers because

xP2N+1(x) − xnP2N+1(xn)
x2 − x2

n

=
N∑

i=0

ainP2i(x).

Then, Eq. (5.4) acquires the form

ϕ(x) ≈
N∑

i=0

P2i(x)
[ ϕ(0)
P ′

2N+1(0)
ai0 + 2

N∑
n=1

ϕ(xn)
P ′

2N+1(xn)
ain

]
. (5.5)

Using the property of orthogonality of the Legendre polynomials, we use Eq. (5.5) to obtain the following
Gaussian-type quadrature formula:

1∫

−1

ϕ(ξ) dξ ≈ 2
[ ϕ(0)
P ′

2N+1(0)
a00 + 2

N∑
n=1

ϕ(xn)
P ′

2N+1(xn)
a0n

]
. (5.6)

Applying Eq. (5.6) for approximate calculation of the integral in Eq. (5.3) and assuming that x = xm, where
xm are zeros of the polynomial P2N+1, we obtain a system of linear algebraic equations with respect to ϕ(xm)
(m = 0, 1, . . . , N):

ϕ(xm) − 1
πλ

{ ϕ(0)a00

P ′
2N+1(0)

[
M

(
− xm

λ

)
+M

(xm

λ

)]

+ 2
N∑

n=1

ϕ(xn)
P ′

2N+1(xn)
a0n

[
M

(xn − xm

λ

)
+M

(xn + xm

λ

)]}
= ψ(xm).

Solving this system, we find the approximate expression for the function p(x):

p(x) = θ1a

N∑
i=0

aiP2i

(x
a

)
,

ai =
ϕ(0)

P ′
2N+1(0)

ai0 + 2
N∑

n=1

ϕ(xn)
P ′

2N+1(xn)
ain.

(5.7)
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TABLE 2

λ c1 c2 λ c1 c2

1/4 5.227 2.298 2 3.363 1.429
1/2 4.568 1.927 4 3.010 1.353
1 3.926 1.624

Substituting (5.7) into (5.2), we find the expression for the function q(r):

q(r) =
2θ1a
π

N∑
i=0

ai

[ 1√
a2 − r2

− 1
a

i−1∑
m=0

(−1)i−m−1 (4i− 4m− 1)(2i− 2m− 2)!!
(2i− 2m− 1)!!

P2i−2m−1

(√
1 − r2

a2

)]
. (5.8)

Relations (4.2) and (4.3), by virtue of (5.8), are written as

P = 4θ1a2a0,

N∑
i=0

ai = 0.

As an example, we consider a die with a parabolic profile under the action of a centrally applied force. The
function of the die-foundation shape has the form f(r) = r2/(2R), where R is the radius of curvature at the apex
of the parabola. Using the values of the parameters

G2 = 3G1/2, G3 = 2G1, ν1 = 0.25, ν2 = 0.35, ν3 = 1/3, H/h = 2,

we find the dependence of the coupling coefficients between P/(θ1a2) and δ/a, and also between P/(θ1a2) and a/R,
on λ. The values of c1 = P/(θ1aδ) and c2 = PR/(θ1a3) calculated for different values of the parameter λ are listed
in Table 2.

6. Auxiliary and Contact Problems for a Transversely Isotropic Layer. We consider an axisym-
metric problem of equilibrium of a transversely isotropic elastic layer adherent to an elastic isotropic half-space.
The axis of symmetry z is directed normal to the plane of isotropy. The layer thickness is denoted by H . The
elastic constants for the isotropic half-space are E2 and ν2.

The boundary conditions of the problem have the following form:
— for z = H ,

σ(1)
z = −q̃(r), τ (1)

rz = 0,

q̃(r) = q(r), 0 ≤ r ≤ a, q̃(r) = 0, a < r <∞;
(6.1)

— for z = 0,

u1 = u2, w1 = w2, σ(1)
z = σ(2)

z , τ (1)
rz = τ (2)

rz . (6.2)

Here u and w are the displacements along the axes of the cylindrical coordinate system r and z, respectively, σz is
the normal stress, and τrz is the shear stress. The boundary conditions (6.1) and (6.2) should be supplemented by
the absence of displacements in the structure for r → ∞ and z → −∞.

For a transversely isotropic layer, we express strains via stresses [10]:

εr =
1
E

(σr − νσφ) − ν1
E1

σz , εφ =
1
E

(σφ − νσr) − ν1
E1

σz,

εz =
ν1
E1

σz − ν1
E1

(σr + σφ), γrz =
1
G1

τrz.

(6.3)

Here εr = ∂u/∂r, εφ = u/r, εz = ∂w/∂z, and γrz = ∂u/∂z + ∂w/∂r. Solving this system with respect to stresses,
we obtain

σr = a1εr + a2εφ + a3εz,

σφ = a2εr + a1εφ + a3εz,

σz = a3εr + a3εφ + a4εz,

(6.4)

where a1 = E(E1 − ν2
1E)/D, a2 = E(νE1 + ν2

1E)/D, a3 = EE1ν1(1 + ν)/D, a4 = E2
1(1 − ν2)/D, and

D = (1 − ν2)E1 − 2Eν2
1(1 + ν). Further we assume that D > 0.
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We substitute the resultant expressions for stresses into the equilibrium equations

∂σr

∂r
+
∂τrz

∂z
+
σr − σφ

r
= 0,

∂σz

∂z
+
∂τrz

∂r
+
τrz

r
= 0

and finally we obtain the Lamé equations

a1L̃
2u+G1

∂2u

∂z2
+ (a3 +G1)

∂2w

∂r ∂z
= 0,

G1L
2w + a4

∂2w

∂z2
+ (a3 +G1)

∂

∂z
L̂u = 0.

(6.5)

In these equations, we use the following notation for the differential operators:

L2 =
∂2

∂r2
+

1
r

∂

∂r
, L̂ =

∂

∂r
+

1
r
, L̃2 =

∂2

∂r2
+

1
r

∂

∂r
− 1
r2
.

We introduce the displacement function χ: u = −(a3 +G1) ∂2χ/∂r ∂z. We express w in terms of χ from the
first equation in (6.5). We have w = (a1L

2 +G1 ∂
2/∂z2)χ. We substitute this expression into the second equation

in (6.5) and transform it. As a result, we obtain the equation in fourth-order partial derivatives for the function χ:
( ∂4

∂z4
+ 2A

∂2

∂z2
L2 +BL4

)
χ = 0,

2A =
a4a1 − 2a3G1 − a2

3

a4G1
, B =

a1

a4
.

(6.6)

Applying Hankel’s transform

χ =

∞∫

0

X(γ, z)J0(γz)γ dγ,

where J0 is the Bessel function, we use Eq. (6.6) to obtain the fourth-order ordinary differential equation. Its
solution in the general form is described by the equation

X1 = c1 ek1γz +c2 ek2γz +c3 ek3γz +c4 ek4γz .

The coefficients k1, k2, k3, and k4 are the roots of the equation k4 − 2Ak2 +B = 0. For the underlying half-space,
we obtain the expression of a similar transform:

X2 = (d1 + γzd2) eγz .

Six functions c1, c2, c3, c4, d1, and d2 of the parameter γ should be found from the boundary conditions (6.1)
and (6.2), for which purpose we express these boundary conditions [with the help of Eqs. (6.3) and (6.4)] in terms of
the functions χj (j = 1, 2). After that, we present the discontinuous function q̃(r) in the form of Hankel’s integral

q̃(r) =
∫ ∞

0

Q(γ)J0(γr)γ dγ

and write all boundary conditions in transforms. Using the expressions for transforms, we obtain a system of six
algebraic equations for determining the sought functions c1, c2, c3, c4, d1, and d2. Solving this system, we obtain
the expression

w(r,H) =
1
θ1

∞∫

0

L(γH)Q(γ)J0(γr) dγ

necessary to formulate the contact problem.
Note that the function L(u) whose expression is not given here has the same meaning as in the previous

problem and possesses similar asymptotic properties:

L(u) = 1 +O(e−2uk1), u→ ∞,

L(u) = n+O(u), u→ 0.
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TABLE 3

λ c1 c2 λ c1 c2

1/4 3.122 1.463 2 2.754 1.336
1/2 2.965 1.392 4 2.710 1.334
1 2.836 1.351

The resultant function L(u) determining the character of the kernel in the integral equation (4.1) allows us
to use the results of Sec. 4.

As an example, we consider a die with a parabolic profile under the action of a centrally applied force. The
function of the die-foundation shape has the form f(r) = r2/(2R), where R is the radius of curvature at the apex
of the parabola. Using the values of the parameters

E1 = 0.915E, G1 = 0.382E, E2 = 1.281E, ν = 0.22, ν1 = 0.24, ν2 = 0.28,

we find the dependence of the coupling coefficients between P/(θ1a2) and δ/a, and also P/(θ1a2) and a/R, on λ.
The values of c1 = P/(θ1aδ) and c2 = PR/(θ1a3) calculated for different values of the parameter λ are listed in
Table 3.
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